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Abstract

This paper models and estimates the gasoline price dispersion across time and space

by using a unique data set at the gas-station level within the U.S.. Nationwide e¤ects

(measured by time �xed e¤ects or crude oil prices) explain up to about 51% of the gaso-

line price dispersion across stations. Re�nery-speci�c costs, which have been ignored

in the literature due to using local data sets within the U.S., contribute up to another

33% to the price dispersion. While state taxes explain about 12% of the price disper-

sion, spatial factors such as local agglomeration externalities, land prices, distribution

costs of gasoline explain up to about 4%. The contribution of brand-speci�c factors is

relatively minor.
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1. Introduction

Retail prices of gasoline are considerably di¤erent across gas stations within the U.S. where

consumer expenditure share of gasoline is about 5%. Since such price di¤erences may be

re�ecting the frictions in the economy, understanding the reasons behind them is the key to

an optimal policy that would improve the level and distribution of individual welfare. For

example, consider a typical day in 2010-2011 when the retail-level gasoline price di¤erence

between any two gas stations within the U.S. was as high as $2.25 (followed by $2.19) per

gallon of regular gas.1 If you think that this price dispersion was due to di¤erences in state-

taxes per gallon, which ranged between 46.6 cents (for California) and 8 cents (for Alaska)

in 2010 and between 49.6 cents (for Connecticut) and 8 cents (in Alaska) in 2011, you are

only partially right, because, for a typical day of the very same sample period, the price

di¤erence between any two gas stations within any given state/district of the U.S. was as

high as $1.57 (for Washington D.C. on October 15th, 2010) followed by $0.99 (for Iowa for

October 10th, 2010).2 Therefore, gasoline price di¤erences not only exist across states but

also within states; accordingly, a detailed spatial analysis (rather than a state-level analysis)

is required to understand the details behind gasoline price dispersion.

We pursue such an investigation by testing the implications of a spatial model (of gasoline

1The gasoline price di¤erences of both $2.25 and $2.19 were between Washington D.C. and Michigan on

October 23rd, 2010 and December 16th, 2010, respectively
2The gasoline price dispersion was not due to outliers, either; because, for a typical day, the median price

di¤erence between any two gas stations within any given state/district of the U.S. was as high as $0.60 (for

Hawaii) followed by $0.44 (for Washington D.C.) and by $0.41 (for Wyoming). Table 1 depicts the complete

descriptive statistics.



consumption, production, and distribution) with a comprehensive gas-station level gasoline

retail price data (with about half a million price observations) obtained from all around the

U.S.3 In the model, consumer-producers get utility out of their consumption of goods as well

as gasoline which is required for transportation purposes. The necessity for transportation

also depends on the distribution of economic activity around the individual who is assigned a

speci�c spatial location. Spatially distributed gas stations maximize their pro�ts based on the

gasoline demand of consumer-producers who are involved in economic activity around the gas

station. Gas stations also take into account the cost of gasoline (charged by nearest re�ners)

and other spatial factors (such as the size and the distribution of economic activity around

the gas station, the distance of the gas station to the re�nery, number of other gas stations in

the vicinity). Optimization implies that the equilibrium price of gasoline at a particular gas

station depends on spatial economic factors, the cost of gasoline at the re�nery, legislative

factors (such as state-level taxes), local competition, and brand-speci�c costs/bene�ts. We

test the implications of this model on the gasoline price di¤erence across gas stations using

a unique data set that is introduced next.

The daily gasoline price data set covering the period between September 10th, 2010

and January 31st, 2011 involves brand information of gas stations as well as their location

information at the exact address level. Combining this data set with the exact (address-level)

3Studies such as Chouinard and Perlo¤ (2007) have used the state-level price observations and shown that

(i) the gasoline price dispersion within the U.S. is due to changes in the price of crude oil; and (ii) across-

state variation in prices can be attributed to demand variation, as well as di¤erences in taxes, environmental

regulations and market power. In addition to such studies, this paper attempts to explain the spatial gasoline

price di¤erences within states.
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location information of oil re�neries, state-level taxes, crude oil prices, land prices (at the

zip-code level), and local agglomeration externalities of spatial gasoline demand (namely,

the distribution of nighttime lights data across space), we decompose the e¤ects of crude oil

prices, re�nery costs, distribution costs, brand-speci�c costs, state taxes, land prices, and

local agglomeration externalities (i.e., spatial demand and number of competitors) through

a spatial analysis that models and estimates the transportation needs of individuals and

distribution of gasoline from re�neries to gas stations. While the crude oil prices (or any

other time-varying e¤ect that is common across gas stations) are considered to capture time-

varying e¤ects that are common across all gas stations within the U.S., other cross-sectional

variables are considered to capture the e¤ects due to spatial factors.

The empirical results show that one percent of an increase in local agglomeration exter-

nalities reduces gasoline prices up to 1:92%, while one percent of an increase in the number

of competitors can reduce gasoline prices as much as 0:19%. Distribution costs of gasoline

from the nearest re�ner to the gas station have positive and signi�cant e¤ects, where one

percent of an increase in distribution costs leads to an increase up to about 0.41% in gasoline

prices. It is also shown that one percent of an increase in land prices leads to an increase

up to about 0:79% in gasoline prices. These results are robust to the consideration of brand

�xed e¤ects, time �xed e¤ects, re�nery �xed e¤ects, and alternative spatial measures (for the

matching between consumer-producers and gas stations). It is also shown that the proposed

model explains the data well; the R-squared values for alternative spatial measures are all

about 0.90.

We further investigate the contribution of each model component in explaining the gaso-

line price di¤erences across gas stations. The corresponding variance decomposition of gaso-
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line prices across time and space suggests that the highest contribution is by time �xed e¤ects

(or crude oil prices) capturing up to 51% (or 39%) of the price dispersion (i.e., nationwide

e¤ects are almost half of the overall e¤ects), followed by re�nery-speci�c costs capturing up

to 33% of the price dispersion, state taxes capturing up to 12% of price dispersion, and spatial

factors (such as local agglomeration externalities, land prices, distribution costs of gasoline)

capturing up to 4% of price dispersion. The contribution of brand-speci�c costs is relatively

minor. Within this picture, as discussed in details in the next section, the main contribution

to the existing literature has been to show that re�nery-speci�c costs explain a big part of

the price dispersion across gas stations, which has been mostly ignored in the literature due

to using local data sets covering either a couple of cities or states within the U.S..

2. Literature Review

This paper is connected to the empirical literature analyzing the determinants of gasoline

price dispersion at the gas station level. The literature has focused on price control variables

such as (i) local demographics or station location (LDSL), (ii) brand or contractual arrange-

ments (BCA), (iii) station density or local concentration (SDLC), and (iv) physical station

characteristics (PSC).4

In the literature, Shepard (1993) has used cross-sectional gasoline price data collected over

a twelve week period in the �rst quarter of 1987 from over 1,100 gas stations from Eastern

Massachusetts. Shepard has shown that prices across stations vary with the contractual form

between re�ners and stations, with the number, proximity and characteristics of competing

retailers, and with station characteristics such as selling non-gasoline products or services; but

4See Eckert (2013) for a survey of empirical studies of gasoline retailing.
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prices do not vary with market conditions such as tra¢ c volume. Ning and Haining (2003)

have used gasoline price data collected over eight biweekly period in mostly the �rst quarter of

1995 from 113 gas stations, together with price data collected over six weekly period in mostly

the �rst quarter of 1997 from 96 gas stations, from She¢ eld, England. They have shown that

spatial competition and being attached to a supermarket are statistically signi�cant, but the

number of cars around the gas station and/or percentage of higher income households in

the neighborhood of a station are not statistically signi�cant. Van Meerbeeck (2003) has

used gasoline price data covering 477 gas stations in Belgium on a daily basis between 1998

and 2001. This data set includes only two brands of gasoline (Shell and TotalFina). Van

Meerbeeck has observed that prices vary with stations located along a highway always charge

the maximum price determined by an agreement between the oil industry and the Belgian

government, and prices are below the maximum price in markets with su¢ cient competition

and that the number of local competitors does not have a large impact on retail gasoline

prices. Barron et al. (2004) have used cross-sectional gasoline price data covering 3,197

gas stations in four metropolitan areas (Phoenix, AZ, Tuscon, AZ San Diego, CA, and San

Francisco, CA) for only one day in 1997 (where that one day di¤ers across metropolitan

areas). They have found that an increase in station density consistently decreases both price

levels and price dispersion across four geographical areas. They have also found that price

vary with brand identi�ers, with a variable indicating whether the primary image of the

station is a convenience store or a repair station, with a variable indicating whether full-

service gasoline is sold at the station, and with a variable re�ecting the number of fueling

positions. Eckert and West (2004) have used daily gasoline price data covering several gas

stations over a period of eight months in 2000 from Vancouver and Ottawa metropolitan
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areas in Canada. They have shown that brand identities, concentration of gas stations,

and the type of ownership are signi�cant in explaining price di¤erences across gas stations.

Clemenz and Gugler (2006) have used daily gasoline price data collected over a �ve month

period in 2000 and 2001 covering 1,603 gas stations from in Austria. They have found that

prices vary with station density, but ownership concentration is not statistically signi�cant.

Pennerstorfer (2009) has used cross-sectional price data covering 400 gas stations in Lower

Austria for September 2003. Pennerstorfer has shown that prices vary with branded versus

unbranded gas stations. Chandra and Tapatta (2011) have used daily gas-station level data

covering the states of California, Florida, Texas, and New Jersey covering the 18 months

period between January 2006 to May 2007. They have shown that price dispersion increases

with the number of �rms in the market and consumer search costs.

Compared to the literature mentioned so far, this paper uses gasoline price data of an

unbalanced daily panel over 144 days from 38,245 gas stations from all around the U.S.

In addition to the literature, we have found that re�ner �xed e¤ects are econometrically

signi�cant in explaining gasoline prices, which is the key in understanding the spatial gasoline

price dispersion within the U.S. and has been ignored by the existing literature focusing on

local data sets. In particular, having a local-level analysis (as in the existing literature)

would suppress the main determinants of gasoline prices such as re�nery e¤ects, because

many gas stations within the same location would already face similar local input costs

due to purchasing gasoline from the same (or closeby) re�ners. In contrast, employing a

nationwide spatial analysis in this paper has allowed for comparisons across locations, which

have resulted in depicting the high contribution of re�nery �xed e¤ects (among others, as
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discussed, above) to the spatial gasoline-price dispersion.5 Furthermore, considering gasoline

price dispersion at the gas-station level across time and space within the U.S., we also show

that time �xed e¤ects (capturing crude oil price changes as well as other time-varying costs

common across gas stations) contribute most, followed in descending order of magnitude

by LDSL (i.e., the sum of the e¤ects of re�nery costs due to the station location, spatial

demand, and land prices), legislative e¤ects (i.e., state-level taxes), SDLC (i.e., number of

competitors) and BCA (i.e., brand identities).

3. The Economic Environment

We would like to model the details of (i) the retail chain in the U.S. gasoline market (to the

degree that our data allow us), (ii) price-setting behavior of gas stations, and (iii) the spatial

distribution of economic activity among individuals. Regarding the retail chain in the U.S.

gasoline market, at least 90% of the gasoline sold at retail-level gas stations is produced by

re�ning crude oil (because up to 10% of the retail-level gasoline may be ethanol in the U.S.).

The gasoline produced at the re�nery is then either directly transported to gas stations by

truck or to local distribution/bulk terminals by pipeline, barge or rail. In the latter case,

local distribution terminals add some additives such as ethanol or brand-speci�c ingredients

(e.g., Chevron including Techron into its gasoline) and sell the �nal version of gasoline to

5To further understand the e¤ects of re�ner �xed e¤ects on the spatial distribution of gasoline prices, one

may also consider the re�nery-related price jumps in California in October 2012, where gasoline prices were

as high as $5 at the gas-station level, while the nationwide average was only about $3.82. Please visit

http://moneyland.time.com/2012/10/08/so-much-for-cheaper-gas-pump-prices-go-haywire-in-california/ for

more details.
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retail-level gas stations where transportation is mostly achieved by trucks. Studies such as

Borenstein et al. (1997) and Kleit (2005) have depicted more details about the gasoline

production and distribution within the U.S. Within this picture, since (i) our primary data

set is for retail gasoline prices at the gas station level, (ii) our secondary data set is for

the location of re�neries, and (iii) we do not have any data on distribution terminals, we

only model the production of gasoline at the re�neries and the distribution of gasoline from

re�neries to the gas stations; i.e., we skip modeling local distribution terminals and include

the possible injection of additives in the production function of gas stations. Accordingly, as

in Chouinard and Perlo¤ (2007) or Doyle and Samphantharak (2008), we assume that each

gas station purchases gasoline from the nearest re�ner.

We model the gasoline demand of individuals/producers in a spatial context. A typical

individual s produces a particular amount of good s to sell; this is the only source of income

for individual s. To match individuals with space, we also denote the location/space that

is used for the economic activity of the individual by s. Individual s consumes gasoline

and other goods purchased from other individuals around her. The transportation needs of

individual s also depends on the distribution of economic activity around her; e.g., a dispersed

city like Miami, FL may require more transportation than a compact city like San Francisco,

CA.

Spatially distributed gas stations maximize their pro�ts based on the gasoline demand

of individuals, the cost of gasoline (charged by nearest re�ners), and other spatial factors.

Optimization implies that the price of gasoline at a particular gas station depends on spatial

economic factors (such as the size and the distribution of economic activity around the gas

station, the distance of the gas station to the re�nery, number of other gas stations in the
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vicinity), the cost of gasoline at the re�nery (re�ecting the changes in oil prices), legislative

factors (such as state-level taxes), local competition, and brand-speci�c costs/bene�ts.

Although the model is mostly static in technical terms, the time dimension comes into

picture through state-level taxes, land prices, and time-varying crude oil prices. To keep the

notation simple, we will skip the time dimension until the end of this section.

3.1. Individuals

The unique individual s at location s 2
�
Slats ; S

lon
s

�
, with Slats and Slons representing the

latitude and longitude intervals, has the utility given by:

Us � logCs � !Ys (3.1)

where Cs is an aggregate index of consumption and !Ys is the disutility due to producing Ys

amount of good s. Consumption of goods is combined with usage of gasoline that is assumed

to depend on the spatial distribution of economic activity around individual s. Accordingly,

Cs is de�ned by the following constant elasticity of substitution (CES) aggregator:

Cs =
�
(Qs)

��1
� + (Ds)

� 1
� (Gs)

��1
�

� �
��1

where Qs is an aggregate index of goods, Gs is the consumption of gasoline, and Ds repre-

sents the spatial distribution of economic activity around individual/location s. Therefore,

individual s has a higher preference toward gasoline (i.e., a higher value of Ds) if she is living

in a neighborhood with a more dispersed economic activity.6

6This modeling approach considers distance-related costs in an indirect way through the spatial distri-

bution of economic activity. An alternative approach may be to consider the distance-related disutility of

individuals from going to any gas station in a direct way. However, there is no empirical evidence in the
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Individual s sells her product Ys to other individuals at a price of �ss, which is further

used to maximize utility subject to the following budget constraint:

CsPs � Ys�ss (3.2)

where Ps (to be further de�ned, below) is the price index for Cs. Utility maximization results

in the following expression for the amount of good s produced:7

Ys =
1

!
(3.3)

The optimal allocation of expenditure yields the following demand functions for Qs and Gs:

Qs =

�
�s
Ps

���
Cs (3.4)

and

Gs = Ds

�
Rs
Ps

���
Cs (3.5)

where �s and Rs are the prices of Qs and Gs, respectively. It is implied that Ps is connected

to �s and Rs as follows:

Ps �
�
(�s)

1�� +Ds (Rs)
1��� 1

1�� (3.6)

Individual s can satisfy her aggregate gasoline demand of Gs from di¤erent gas stations

around her through another CES aggregator:

Gs =

 X
g2Ss

(Ns)
� 1
� (Ggs)

��1
�

! �
��1

(3.7)

literature for such a consideration; moreover, we do not have any data (that match individuals with gas

stations) that can be used to test the implications in such a case. In sum, we believe that we have the best

available modeling approach given the data and empirical evidence in the literature.
7This is also the expression one can get with a modeling strategy which endows each individual with 1

!

unit of product.
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where g 2 Ss represents the set of gas stations around individual s, Ggs is the gasoline demand

of individual s at gas station g (which is around individual/location s), and Ns is the number

of gas stations around individual/location s. The optimal allocation of gasoline expenditure

yields the following demand function of individual s at gas station g:

Ggs =
1

Ns

�
Rg

Rs

���
Gs (3.8)

=
DsXs (R

g)��

Ns

where Xs = (Ps)
� Cs is a measure of the size/scale of economic activity of individual s, and

Rg is the retail price of gasoline (per gallon) at gas station g that satis�es:

Rs �
 X
g2Ss

(Rg)1��

Ns

! 1
1��

(3.9)

3.2. Gas Stations

Since we do not model local distribution terminals, we include the possible injection of

additives (e.g., Chevron injecting Techron into its gasoline) in the production function of gas

stations. In particular, gas station g of brand b located at location g produces Y g gallons of

gas according to:

Y g =
(Kg)� (Bg)� (Hg)1����

Ag

where Kg is the amount of gasoline purchased from the nearest re�nery, Bg is the brand-

speci�c additives included into the gasoline, Hg is the land/area, and Ag is the productivity

which is assumed to be subject to local agglomeration/Marshallian externalities:

Ag =

�fGg�
 �fN g
�1�


���� (1� �� �)1����
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where fGg represents the size and spatial distribution of economic activity around gas station
g, fN g is the number of gas stations around gas station g, and 
 and (1� 
) are the parameters

governing the strength of production externalities.8 The gas station chooses Kg taking the

price set by the nearest re�nery as given. The cost minimization results in the following

marginal cost of production:

M g =
(Wr (1 + �

g
r))

� (bg)� (hg)1�����fGg�
 �fN g
�1�
 (3.10)

where Wr is the price of gasoline charged by the nearest re�nery r, � gr represents transport

cost of gasoline from the nearest re�nery r to gas station g, bg is the price of brand-speci�c

ingredients/additives, and hg is the price of land. On top of the marginal cost of production,

gas station g also pays (net) gasoline taxes of tg. Considering such additional costs, gas

station g sets its price by maximizing its pro�t of:

�g = (Rg �M g (1 + tg))Y g

subject to the demand for gasoline at gas station g.

We need to match individuals with gas stations to calculate the demand for gasoline at

gas station g. Accordingly, we will model individuals purchasing gasoline from gas stations

around them. Although "around them" is an uncertain concept, we will de�ne it in detail

and provide alternative measures for it in the Appendix covering the details of the data. For

now, we will simply consider that any individual s around gas station g will have a demand

for gasoline at gas station g given by Equation 3.8. The number of individuals, however,

will change with respect to the spatial measure of location considered. As a result, the total

8For simplicity, the denominator has been selected to get rid of the constant terms in the calculation of

marginal cost, below.
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demand is given by: X
s2Sg

Ggs = (R
g)��

X
s2Sg

DsXs

Ns

where s 2 Sg represents the set of individuals around gas station g. Substituting this ex-

pression into the market clearing condition, we have Y g =
P

s2Sg G
g
s, which implies that the

optimal retail price of gasoline for gas station g can be obtained as:

Rg = �M g (1 + tg) (3.11)

where M g is already given in Equation 3.10, and �
�
= �

��1

�
represents the gross markup.

3.3. Re�ners

Re�ner r produces Yr units of gasoline according to a linear production function:

Yr = Or

where Or is the amount of crude oil used as an input. The re�nery chooses Or taking its

price as given. The cost minimization results in the following marginal cost of production:

Mr = W
o (1 + � or) (1� T ) (3.12)

where W o is the price of crude oil at the oil �eld, � or represents net transport costs of crude

oil from the oil �eld to the re�nery, and T represents subsidies/transfers received. Since we

do not have any price data for re�ners, rather than complicating the model with unnecessary

details, we simply assume that the re�ner sets its price equal to its marginal cost:9

Wr = W
o (1 + � or) (1� T ) (3.13)

9In the empirical analysis below, we will use re�ner �xed e¤ects to capture any other detail (that is

common through time) of the gasoline prices charged by re�ners that have not been modeled here.
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As in the case of gas stations, although we accept the location of re�ners given in our

empirical investigation, we assume that the location-selection problem of re�ners has already

been achieved in an upper-level optimization (that has resulted in a zero-pro�t condition

under the simple assumption of free entry).

3.4. Closing the Model

For simplicity, we close the model by assuming that (i) gas stations and land are owned

by re�ners with equal shares among them (although they are managed independently so

that they have their own optimization problems), and (ii) tax revenues are used to subsidize

re�ners. Accordingly, gas station pro�ts, tax revenues, and land income are transferred to

all re�ners through T in Equation 3.12, where T , which is common across re�ners, is chosen

in such a way that the total amount of subsidies/transfers is equal to the total amount of

gas station pro�ts, tax revenues, and land income for each time period.

3.5. Time Dimension

The time dimension of the model comes from the price of crude oil W o (which is an input for

the re�ner), taxes tg (which can be di¤erent between legislative years), land prices hg (subject

to changes due to local markets that we do not model), gas station markups � (determined

on a daily basis, since marginal costs may change every day), and transfers to re�ners T

(capturing time-varying gas station pro�ts, tax revenues, and land income). Accordingly,

using Equations 3.10 and 3.13, the gasoline price expression for gas station g (i.e., Equation
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3.11) can be rewritten as follows, this time with the time dimension:

Rgt =
(W o

t (1 + �
o
r) (1� Tt) (1 + � gr))

� (bg)� (hgt )
1���� (1 + tgt )�t�fGg�
 �fN g

�1�
 (3.14)

This is the expression of which log version we estimate below, where fGg and fN g are assumed

to be constant over time.

4. Empirical Analysis

This section depicts the estimation methodology, details of the variance decomposition analy-

sis, and empirical results. We estimate the log version of Equation 3.14 by matching the

details of the model with the data as detailed in the Appendix through Equations 7.1, 7.4,

7.5, and 7.6.

4.1. Estimation Methodology

Using the data de�nitions in the Appendix, the log gasoline prices can be written as follows:

logRgt = � log (W o
t (1� Tt)�t)| {z }

Time Fixed E¤ects

+ � log (1 + � or)| {z }
Re�nery Fixed E¤ects

+ �� log (dgr)| {z }
Distance to Re�nery

(4.1)

� 
� log (�g)| {z }
S.D. of Nighttime Lights

� (1� 
) log
�fN g

�
| {z }
# of Nearby Stations

+ � log (bg)| {z }
Brand Fixed E¤ects

+(1� �� �) log (hgt2m)| {z }
Land Prices

+ log
�
1 + tg;state;multiplicativet2y

�
| {z }

State Taxes

+log
�
1 + tg;federal;multiplicativet2y

�
| {z }

Federal Taxes

+ "gt|{z}
Residuals
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which can be estimated using time �xed e¤ects to measure the time-varying costs of log (W o
t (1� Tt)),

re�nery �xed e¤ects to measure log transport costs of crude oil from the oil �eld to the re�nery

log (1 + � or), log distance to the re�nery log (d
g
r) to measure transportation costs of gasoline

from the re�nery to the gas station, log standard deviation of nighttime lights log (�g) to mea-

sure the size and spatial distribution of economic activity around gas station g, log number

of gas stations log
�fN g

�
around gas station g, brand �xed e¤ects to measure brand-speci�c

costs log (bg), time-varying log Zillow Home Value Index at the zip-code level to measure

land prices log (hgt2m), time-varying state taxes calculated by Equation 7.5 for di¤erent years

(e.g., 2010 versus 2011) to measure log
�
1 + tstate;multiplicativet

�
, and federal taxes calculated

by Equation 7.6 to measure
�
1 + tfederal;multiplicativet

�
; the unexplained part (i.e., residuals of

"gt ) are assumed to represent the measurement errors. Since state and federal taxes have a

coe¢ cient of one in front of them, we use restricted least squares for the estimation.10

4.2. Variance Decomposition Analysis

Although the regression analysis depicts how the gasoline prices change with right hand side

(RHS) variables, it cannot explain the contribution of each RHS variable on the variance of

gasoline prices across gas stations, which is a natural measure of gasoline price dispersion.

Note that the variance decomposition analysis also depicts the percentage of total sum of

squares explained by each RHS variable; i.e., it decomposes the contribution of each RHS

variable on the R-squared measure. Accordingly, using the estimated parameters and the

10It is important to emphasize that we cannot identify the individual parameters of �, � or �, while we can

identify 
 and �. Nevertheless, their identi�cation is not necessary for the variance decomposition analysis,

below, where all we need is the overall �tted value of each component on the right hand side of Equation 4.1.
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�tted values coming from the estimation of Equation 4.1, we will conduct a variance decom-

position analysis where we will further investigate the role of each explanatory variable on

the variance of gasoline prices across gas stations as follows:

var
�
logRgs;t

�
= cov (� log (W o

t (1 + Tt)�t) ; logR
g
t )| {z }

Time Fixed E¤ects

+ cov (� log (1 + � or) ; logR
g
t )| {z }

Re�nery Fixed E¤ects

+cov (�� log (dgr) ; logR
g
t )| {z }

Distance to Re�nery

� cov (
� log (�g) ; logRgt )| {z }
S.D. of Nighttime Lights

�cov
�
(1� 
) log

�fN g
�
; logRgt

�
| {z }

# of Nearby Stations

+ cov (� log (bg) ; logRgt )| {z }
Brand Fixed E¤ects

+cov ((1� �� �) log (hgt2m) ; logRgt )| {z }
Zillow Home Value Index

+cov
�
log
�
1 + tg;state;multiplicativet2y

�
; logRgt

�
| {z }

State Taxes

+cov
�
log
�
1 + tg;federal;multiplicativet2y

�
; logRgt

�
| {z }

Federal Taxes

+ cov ("gt ; logR
g
t )| {z }

Residuals

where var is the operator of variance and cov is the operator of covariance.

4.3. Empirical Results

The estimation results of Equation 4.1 are given in Table 2 where di¤erent spatial mea-

sures (as introduced in the Data Appendix) have been considered. In all regressions, brand,

re�nery, and time �xed e¤ects have been included. As is evident, local agglomeration exter-
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nalities of spatial gasoline demand (measured by the standard deviation of nighttime lights)

and the number of local competitors have negative and signi�cant e¤ects on gasoline prices

as expected by the model. In terms of their magnitudes, one percent of an increase in local

externalities can lower gasoline prices as much as 1.92%, while one percent of an increase in

the number of competitors can lower gasoline prices as much as 0.19%. Distribution costs

of gasoline from the nearest re�ner to the gas station have positive and signi�cant e¤ects,

also as expected; one percent of an increase in distribution costs leads to an increase up to

about 0.41% in gasoline prices. The e¤ects of land prices are also positive and signi�cant (as

expected) where one percent of an increase in land prices leads to an increase up to about

0.79% in gasoline prices. Also considering the unit coe¢ cients in front of state and federal

taxes (through restricted least squares), the R-squared values are all about 0.90, which is

promising.

Although an R-squared value of 0.90 is a high measure of �t, we would like to know

the contribution of each RHS variable on this value. Accordingly, we depict the variance

decomposition of log gasoline prices (across time and space) in Table 3 where the percentage

contribution of each RHS variable is depicted for di¤erent spatial measures. As is evident,

the highest contribution to the gasoline price dispersion of about 51% is by time �xed e¤ects,

followed by re�nery �xed e¤ects contributing up to 33%, state taxes contributing about 12%,

spatial demand contributing up to 2%, land prices contributing up to about 1.4%, the number

of local competitors contributing up to 0.3%, and distribution costs contributing up to 0.1%.

The contribution of brand �xed e¤ects on the gasoline price dispersion, however, is very

minor, ranging between �0:5% and �0:1% that can be considered as a smoothing e¤ect of

discount gasoline stations. Since additive federal taxes were common across all gas stations,
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their multiplicative version has another smoothing e¤ect on gasoline price dispersion; federal

taxes reduce gasoline price dispersion by more than 7%.

Overall, since time �xed e¤ects can be thought as nationwide e¤ects (because they capture

any e¤ect common across all gas stations within the U.S.), we can claim that about half of

the gasoline price dispersion (across time and space) is due to nationwide e¤ects, and the

remaining half is due to spatial factors.

5. Discussion and Robustness

This section questions the RHS variables that have been included in the regression analysis,

provides alternative RHS measures for robustness, and discusses the empirical results through

comparisons with the existing literature.

Although the model implies that we should be including all the RHS variables in the

regression analysis, is their inclusion statistically signi�cant? To answer this question, for

each spatial measure, we used several F-tests to compare the full version of the model with

its restricted versions where we excluded one set of RHS variables (e.g., spatial gasoline

demand, brand �xed e¤ects or time �xed e¤ects) at a time. Under the null hypothesis that

the restrictions are valid, the F-test results suggested that p�values are virtually equal to

zero; hence, all restrictions were rejected, or the full version of the model was accepted as

the correct version of the model.

According to the empirical results, the gasoline price dispersion is mostly determined by

time �xed e¤ects. Although they have been included in the analysis to capture the e¤ects

of crude oil prices, they may be capturing any other time varying e¤ect that is common
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across all gas stations as well (e.g., weekend, weekday, or before-holiday pricing strategies).

When we compared estimated time �xed e¤ects with daily crude oil prices, we obtained a

correlation coe¢ cient of about 0.87 (for all �ve spatial measures that we considered); hence,

time �xed e¤ects in fact mostly capture crude oil prices during the sample period. The

di¤erence between time �xed e¤ects and crude oil prices can mostly be attributable to the

transmission of crude oil prices to retail-level gasoline prices (or daily pricing strategies) as

we discussed above. Nevertheless, for robustness, we had an alternative analysis where we

replaced time �xed e¤ects with crude oil prices. In such a case, the contribution of crude oil

prices to the gasoline price dispersion (through our variance decomposition analysis) has been

estimated as about 38% or 39% (depending on the spatial measure considered) where the

di¤erence between the contribution of time �xed e¤ects (about 51%) and crude oil prices has

shown up in the residuals (of which contribution increased from about 10% to about 22%).11

Therefore, replacing time �xed e¤ects with crude oil prices does not alter the result that the

main contribution to the overall gasoline price dispersion during our sample period is by crude

oil prices. This result is consistent with Chouinard and Perlo¤ (2007) who show using a panel

of monthly observations at the state level for the 1989�1997 period that almost the entire

variation in national gasoline prices is due to a rise in the price of crude oil and that across-

state variation can be attributed to demand variation, as well as di¤erences in taxes. We also

show that di¤erences in spatial demand and taxes are important in explaining gasoline price

dispersion, however, in addition to Chouinard and Perlo¤ (2007), we have shown that re�nery

�xed e¤ects also have signi�cant e¤ects (e.g., about 1/3 of the gasoline price dispersion is

11Compared to Table 3, the contributions of other RHS variables on the gasoline price dispersion were

almost the same when time �xed e¤ectes were replaced by daily crude oil prices.
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due to re�nery �xed e¤ects).

Compared to the studies focusing on gas-station level gasoline prices (that we discussed

during the literature review, above), showing the contribution of re�nery �xed e¤ects to the

gasoline price dispersion is the main nuance of this paper. The main reason for other papers

ignoring such e¤ects were either due to the lack of a comprehensive data set and/or the

lack of modeling such e¤ects. Nevertheless, the high contribution of re�nery �xed e¤ects in

this paper can be connected to studies for other countries at more aggregated levels such as

the one by Sen (2003) who shows using a panel data set of monthly city-level prices for 11

Canadian cities over the 1991�1997 period that wholesale prices (captured by re�nery �xed

e¤ects in this paper) play a larger role in retail price determination than city level market

structure (captured by spatial demand or land prices in this paper).

Since the number of gas stations around gas station g measured by fN g in our gasoline

price data set may not be capturing the actual number of gas stations, as an alternative, we

used the average nighttime lights ms to proxy for fN g as discussed, above. The corresponding

analysis suggested that although the average nighttime lights a have negative and signi�cant

coe¢ cient estimate, its contribution to the gasoline price dispersion is still at most about

1.5%. Moreover, although their coe¢ cient estimates were found to be signi�cant, the contri-

butions of brand �xed e¤ects and spatial demand to the gasoline price dispersion were found

to be minor (in both benchmark and alternative analyses) as well. However, recall that the

studies focusing on gas-station level gasoline prices (mentioned above) have mostly empha-

sized the e¤ects of the brand of gasoline (measured by brand �xed e¤ects in this paper),

spatial gasoline demand, and local competition on the gasoline price dispersion. One reason

for this di¤erence may be the focus on local or small markets by such other studies, because,

21



by focusing on the overall U.S. market, this paper can capture the big picture of the gasoline

market. To be more speci�c, consider a special case of our model where we would focus on

a very local market for a speci�c day where all gas stations purchase gasoline from the very

same re�nery. In such a case, gas stations would have very similar gasoline prices with each

other, because they would be subject to very similar time �xed e¤ects, re�nery �xed e¤ects,

state taxes, land prices, and gasoline distribution costs; for sure, the only remaining factors

to capture the price dispersion between these local gas stations would then be the brand

�xed e¤ects, spatial demand, and local competition. Therefore, focusing on the overall U.S.

market is in fact the key here.

6. Conclusion

Using a unique comprehensive gasoline price data at the gas-station level, this paper has

achieved a spatial analysis to explain the determinants of the gasoline prices and their dis-

persion across space and time within the U.S.. The results suggest that about half of the

gasoline price dispersion (across time and space) is due to nationwide e¤ects, and the re-

maining half is due to spatial factors. The change in gasoline prices through time is mostly

explained by crude oil prices, and the spatial gasoline price dispersion is mostly explained by

re�nery �xed e¤ects followed by state-level taxes.

Compared to the existing literature that emphasize the role of gasoline brands and local

density of stations on gasoline prices, we have shown that the contribution of such e¤ects

are relatively minor after controlling for other/spatial determinants of gasoline prices (e.g.,

spatial gasoline demand, distribution costs of gasoline, and land prices). The main reason for
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the results of this paper being di¤erent compared to the existing literature is due to having

a nationwide gasoline price data within the U.S., whereas existing studies (at the gas station

level) for the U.S. have mostly focused on local markets with only a couple of cities/states

involved in the spatial analysis. As discussed in more details in the text, having such a local-

level analysis would suppress the main determinants of gasoline prices, such as re�nery e¤ects,

because many gas stations within the same location would already face similar local input

costs due to purchasing gasoline from the same (or closeby) re�ners. In contrast, employing a

nationwide spatial analysis in this paper has allowed for comparisons across locations, which

have resulted in depicting the high contribution of re�nery �xed e¤ects (among others, as

discussed, above) to the spatial gasoline-price dispersion.

Our analysis is not without caveats. Due to the lack of available data, unlike Ning and

Haining (2003), Barron et al. (2004), Eckert and West (2004, 2005), or Hosken et al. (2008),

the model of this paper has not considered any gas station characteristics (e.g., having a car

wash or repair service) either. Also, we have mostly focused on the spatial (rather than a

time series or a "full" panel) dimension of gasoline price determination due to the unbalanced

panel nature of the gasoline price data, and we have not considered any dynamics, such as

spatial variables interacting with time �xed e¤ects in the regression analysis; considering

such interactions through appropriate modeling for unbalanced panels would result in richer

dynamics, although they were not the focus of this paper.
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7. Appendix: Data

The details of the data required to estimate the log version of 3.14 are depicted in this section

which literally connects Equation 4.1 to Equation 3.14 in the main text.

7.1. Data for Prices

We collected the regular gasoline prices per gallon Rgt covering 50 states of the U.S., together

with District of Columbia, from www.gasbuddy.com on a daily basis between September 10th,

2010 and January 31st, 2011 (i.e., for 144 days). GasBuddy.com is a network of web sites in

the United States that operates under many local domain names such as MiamiGasPrices.com

or NewYorkGasPrices.com. Individuals post the gasoline prices that they have seen around

them to these web sites; in return, they earn points that can be used to enter ra­ es for prizes

such as $250 gas cards. Atkinson (2008) has cross checked the validity of the price data

collected from GasBuddy.com by using other independent gasoline price data and concluded

that the data obtained from GasBuddy.com can in fact be used to examine spatial price

competition, both within and across markets.
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We downloaded the data at around 8pm each and every day during the sample period.

This is the �rst paper introducing and using this data set. These are regular gasoline prices

at the gas station level where the location information is as good as the actual address of

the gas station in the U.S..12 The brand of the gas station is also available (which we use

to create brand �xed e¤ects to measure bgs�s in the regression analysis). A typical gasoline

price observation that we have is a price of $2.73 on October 15th, 2010 from the gas station

brand of "Murphy USA" located at "8922 N Terre Haute Rd, Paris, IL". Since the data on

the web page have been submitted by actual individuals, there were some problems, such

as typos in the addresses, or digit errors made while typing the prices. For the former, we

have �ltered the data by matching the addresses with the Google Map addresses; when they

matched (i.e., when the actual address could be found by Google Map with an accuracy of

7, 8 or 9, where 9 is the best level of accuracy at the exact location name and address level,

8 is the accuracy at the address level, and 7 is the accuracy at the level of intersection of

roads according to the standards of the Google Map system), we kept the price observation

and further obtained the latitude and longitude, together with zip codes (which we use to

match the gasoline price data with land prices), of each and every gas station in our sample.

For the latter, we �ltered the price data by ignoring the price observations that are at least

two times higher or lower than the average gas prices for a speci�c day. After such a data

cleaning process, we ended up with 469,408 (i.e., close to half a million) price observations.

12In other contexts, studies such as by Byrne et al. (2015) have also used daily gasoline price data sets for

a couple of cities obtained from similar web pages, but the data set of this paper is the most comprehensive

one to our knowledge, because rather than just a couple of cities, it covers gas stations from all states of the

U.S..
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These gasoline price observations belong to 38,245 di¤erent gas stations; hence, on average,

we have about 12 days of gasoline price observation per gas station. The spatial distribution

of gas stations can also be found on a map of the U.S. in Figure 1.

The descriptive statistics of the gasoline price data are given in Table 1 where details

at the state-level are provided for presentational purposes; these are the numbers providing

the motivation of this paper. The left panel of Table 1 (after the �rst column) provides

information on gasoline prices for the pooled sample of all locations and all time periods.

Accordingly, during the sample period, the highest price has been recorded as $4.26 from

Washington D.C. and the lowest price has been recorded as $2 from various states. The

median gasoline price has been $2.79. The highest (lowest) standard deviation has been

recorded as 0.25 (0.05) from Washington D.C. (Utah), followed by 0.21 (0.08) from Alaska

(Montana). Among the minimum (maximum) prices across states, the standard deviation is

0.28 (0.30), while, among the median (mean) prices across states, the standard deviation is

0.19 (0.18).

The middle panel of Table 1 provides further information on the price dispersion across

states. In particular, the maximum gasoline price di¤erence between any two gas stations is

calculated for each state and for each day as follows:

state !
Rgt = max (R

g
t j state)�min (Rgt j state)

Then, across time, the other statistics are calculated according to
state !
Rgt ; e.g., the column

min for any state is calculated by �nding the minimum value of
state !
Rgt across t. Therefore,

the maximum price di¤erence for a typical state in a typical day was as high as $1.57 (for

Washington D.C.) and as low as $0 (for Alaska). The maximum price di¤erence on a typical
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day, which can be measured for any given state by the median of the maximum price di¤erence

across the whole sample is also given in Table 1, where Hawaii has the highest value of $0.60,

while states such as Florida, Minnesota, New Hampshire, New Jersey and Wisconsin share

the lowest value of $0.08. Such di¤erences across states are also shown in Figure 2 on the

U.S. map for the maximum price di¤erence on a typical day. As is evident, Mountain and

West North Central States (de�ned according to Census Regions and Divisions of the United

States) have higher price di¤erences across gas stations. According to Table 1, the standard

deviation (across time) of the maximum price di¤erence was as high as 0.60 (for Hawaii)

and as low as 0.09 (for New Hampshire). In sum, there were high levels of gasoline price

dispersion, even within states/districts, during the sample period.

7.2. Data for Economic Activity and Spatial Measures

To capture the part of the local agglomeration externalities through fGg in Equation 3.14 (that
have negative e¤ects on gas-station-level gasoline prices), since we have a spatial analysis of

gasoline prices, we need corresponding spatial data for the size and spatial distribution of

economic activity around gas station g. Accordingly, we use the standard deviation of the

nighttime lights around gas station g as a proxy for fGg:
fGg = (�g)� (7.1)

where �g represents the standard deviation of nighttime lights (across space) around gas

station g. It is important to emphasize that standard deviation is a measure that can capture

both the size/scale and the distribution of nighttime lights13; hence, it is a perfect match to

13Because, as is well known in statistics, standard deviation is a measure that captures both the scale

and the variation in a distribution. If one would like to have a pure measure of spatial distribution of
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capture the expected negative e¤ects of fGg. Our motivation comes out of many studies that
have shown the almost-perfect correlation between economic activity and nighttime lights

(e.g., see Croft 1978, Elvidge et al. 1997, Sutton and Costanza 2002, Ebener et al. 2005, Doll

et al. 2006, Sutton et al. 2007, and Ghosh et al. 2009, among many others). However, this

is the �rst paper we are aware of that uses the spatial distribution of nighttime lights data

to measure the spatial distribution of economic activity. The average (rather than standard

deviation of) nighttime lights would de�nitely be a measure of economic activity, but it cannot

capture the spatial distribution of economic activity; we rather save the average measure of

nighttime lights to measure the economic activity of individuals and for a robustness analysis,

where we use it as an alternative proxy for the number of gas stations.

To capture the size of economic activity of individual s, Xs, we use the nighttime light

of location s (i.e., the location of individual s) as a proxy:

Xs = (n
s)� (7.2)

where ns is the nighttime light of location s. Similarly, to capture the spatial distribution

of economic activity around individual s, Ds, we use the coe¢ cient of variation (de�ned as

standard deviation over mean) of the nighttime lights around individual s as a proxy:

Ds =

�
�s

ms

��
(7.3)

where �s represents the standard deviation and ms represents the average nighttime lights

(across space) around individual s.

economic activity (that is independent of the size/scale), one should better consider a measure like coe¢ cient

of variation de�ned as the standard deviation over mean, which is accepted to be a normalized measure of

dispersion.
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In technical terms, the nighttime lights are measured for each 30-arc-second grids, span-

ning �65 to 75 degrees latitude and �180 to 180 degrees longitude around the world; ob-

viously, we only use the part of the nighttime lights for the U.S. To give the reader a bet-

ter idea, although the exact measure is based on the exact spatial location (due to the

spherical shape of the earth), on average, one 30-arc-second grid correspond to a space

about 25(= 5 � 5) square blocks or 0:25 (= 0:5� 0:5) square miles in the U.S.; there-

fore, these 30-arc-second grids are natural minimum measures in our analysis to create

di¤erent spatial location concepts. Accordingly, to connect the data to the model, we as-

sume that each 30-arc-second grid is occupied by a potential individual, say, individual

s in the model. In Figure 3, an approximate typical example of one 30-arc-second grid

in Chicago, IL is given by the area/space between "166 W Washington St, Chicago, IL

60602" and "520 S Michigan Ave, Chicago, IL 60605" which corresponds to the location

s 2
�
Slats ; S

lon
s

�
where Slats = [41:8753797; 41:8834904] represents the latitude interval and

Slons = [�87:6330631;�87:6245221] represents the longitude interval of the area between the

two addresses.

In the model, it is the individuals who travel for economic activity and purchase gasoline.

Although we match each 30-arc-second grid with a potential individual, we also need to

match the travel patterns of individuals with spatial measures of locations to identify the

phrases that we have been using so far, "around individual s" and "around gas station g".

Accordingly, the spatial location measures we consider in the empirical analysis is to capture

the travel patterns of individuals. For example, if we would use only one 30-arc-second grid

as our spatial measure, "around individual s" or "around gas station g" would correspond to

25 square blocks (or 0.25 square miles) in the U.S. on average, and if we would use hundred
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30-arc-second grids as our spatial measure, they would correspond to 2; 500(= 50�50) square

blocks (or 25 square miles) in the U.S. on average. When "around individual s" and "around

gas station g" intersect with each other on the map, it means that individual s has a demand

for gasoline at gas station g given by Equation 3.8; hence, the gas stations located within the

travel patterns of individuals are potential suppliers of gasoline.

In formal terms, we consider �ve di¤erent measures of spatial location.

Spatial Measure #1: Since we compute the spatial distribution of economic activity

by the coe¢ cient of variation of nighttime lights across 30-arc-second grids in Equation 7.1,

we need nighttime light data from several grids to obtain a standard deviation measure. So,

to �nd the intersection of "around individual s" and "around gas station g" on the map,

for each gas station g, after �nding the 30-arc-second grid at which gas station g is located

(by matching the latitude and longitude of the gas station with the same information from

the nighttime lights data), we consider 5 additional 30-arc-second grids (about 2.5 miles) to

the north, south, west, and east of the gas station�s grid. This would correspond to a space

consisting of 121 30-arc-second grids around gas station g. It is also important to emphasize

that we have the nighttime light data for every 30-arc-second grid; hence, we have enough

number of observations to calculate the standard deviation of nighttime lights �g across these

grids.

Spatial Measure #2: A larger version of Spatial Measure #1, this time with 10 ad-

ditional 30-arc-second grids (about 5 miles) to the north, south, west, and east of the gas

station�s 30-arc-second grid. This would correspond to a space consisting of 441 30-arc-second

grids or 110 square miles around the gas station considered.

Spatial Measure #3: A larger version of Spatial Measure #1, this time with 25 addi-
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tional 30-arc-second grids (about 12.5 miles) to the north, south, west, and east of the gas

station�s 30-arc-second grid. This would correspond to a space consisting of 2,601 30-arc-

second grids or 650 square miles around the gas station considered.

Spatial Measure #4: A larger version of Spatial Measure #1, this time with 50 ad-

ditional 30-arc-second grids (about 25 miles) to the north, south, west, and east of the gas

station�s 30-arc-second grid. This would correspond to a space consisting of 10,201 30-arc-

second grids or 2,550 square miles around the gas station considered.

Spatial Measure #5: A larger version of Spatial Measure #1, this time with 100

additional 30-arc-second grids (about 50 miles) to the north, south, west, and east of the gas

station�s 30-arc-second grid. This would correspond to a space consisting of 40,401 30-arc-

second grids or 10,100 square miles around the gas station considered.

One may be curious about why we have considered a spatial measure up to about 10,100

square miles around the gas station. Our motivation comes from the National Household

Travel Survey (for the year of 2009) that has collected data on both long-distance and local

travel by the American public. According to this survey, on average, an individual has

traveled (one-way) about 36 miles per day, and an individual has driven (one-way) about 29

miles per day. Since an individual has the option to purchase gasoline from any location on

her (one-way) route, considering spatial measures up to 10,100 square miles (i.e., one-way

routes up to 50 miles) around the gas station just covers the demand patterns of a typical

gasoline consumer in the U.S.

The nighttime lights data have been obtained from the web page of the National Geo-

physical Data Center.14 The data set is the part of "Version 4 DMSP-OLS Nighttime Lights

14The nighttime light �les are cloud-free composites made using all the available archived DMSP-OLS
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Time Series" for 2010. Within this data set, we use two di¤erent measures of nighttime lights:

(i) Average Visible, Stable Lights, and Cloud Free Coverages; and (ii) The nighttime lights

product known as "avg_lights_x_pct" which is derived from the average visible band digital

number of cloud-free light detections multiplied by the percent frequency of light detection.15

The empirical results that we depict have been obtained by using the latter; but, the results

were almost exactly the same when we used the former.

7.3. Data for Number of Gas Stations

To capture the part of the local agglomeration externalities through fN g in Equation 3.14 (that

have negative e¤ects on gas-station-level gasoline prices), we have calculated the number of

gas stations fN g around gas station g (in Equation 3.14) as the number of gas stations for

which we have price data at least once during our sample period of 144 days. The number of

gas stations for each state/district (for the pooled sample through time) is given in the �rst

column of Table 1 where the numbers range between 1,609 (for Ohio) and 88 (for Washington

D.C.) with a total of 38,245. The number of gas stations per day ranges between 3,480 and

3,840.

Many earlier studies have also investigated the contribution of local station density (mea-

sured by fN g in this paper) by considering di¤erent measures of spatial locations. For example,

Hosken et al. (2008) and Barron et al. (2004) have considered the number of stations within

smooth resolution data for the calendar year of 2010.
15In the latter, the inclusion of the percent frequency of detection term normalizes the resulting digital

values for variations in the persistence of lighting. For instance, the value for a light only detected half the

time is discounted by 50%. Note that this product contains detections from �res and a variable amount of

background noise. This is the product used to infer gas �aring volumes from the nighttime lights.
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a 1.5 mile radius, while Eckert and West (2005) have considered a 2 kilometer radius, and

Van Meerbeeck (2003) has considered the number of stations within the same municipality.

To be consistent with our spatial measures introduced above, we calculated the number of

gas stations fN g in our sample (by using their latitudes and longitudes from Google Map)

depending on our di¤erent spatial measures, above. Therefore, compared to the existing

literature, we focus on more than one spatial measure to calculate the number of station.

We are well aware that fN g (i.e., number of gas stations for which we have price data at

least once during our sample period of 144 days) may not be capturing the actual number

of gas stations around gas station g; hence, as an alternative, in the robustness/regression

analysis, we also used the average nighttime lights mg around gas station g as a proxy for

fN g because of the trivial conjecture that the number of gas stations is correlated with the

economic activity around gas station g.

7.4. Data for Re�ners

Since we haven�t modeled the petroleum bulk stations and distribution terminals (for sim-

plicity, because of the lack of available location data for such stations/terminals, and be-

cause of the lack of data on possible contracts between terminals and gas stations), we

assumed that gas stations purchase gasoline from the nearest re�nery as in Chouinard and

Perlo¤ (2007) or Doyle and Samphantharak (2008). We considered the possibility of gas

stations purchasing gasoline from Canadian re�ners as well due to the open nature of trade

between the two countries, as stipulated by the North American Free Trade Agreement

(NAFTA). Accordingly, we obtained the list of gasoline re�neries in the U.S. and Canada

from www.globalenergyobservatory.org. Then, we found the exact address, together with
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latitude and longitude, of each and every re�nery by using various sources on the internet in-

cluding Google Maps, Google Earth, and individual re�nery web pages. Using such location

information of re�neries, we found the nearest re�nery for each and every gas station in our

sample (i.e., we identi�ed r in W r
t ) and calculated the corresponding great-circle distance of

transportation of gasoline from the nearest re�nery to each gas station (dgr) to be connected

to the gasoline transportation costs (1 + � gr) as follows:

(1 + � gr) = (d
g
r)
� (7.4)

where � is the elasticity of distance to capture the relation between distance and gasoline

transportation costs. The spatial distribution of re�ners can also be found on a map of

the U.S. in Figure 1 where there are 143 re�ners from the U.S. and 4 re�ners from Canada;

Canadian re�ners are the nearest re�ners to some gas stations (in our sample) in Northeastern

United States. Note that we also use re�nery �xed e¤ects in the regression analysis, so that

possible border e¤ects (if any) caused by purchasing gasoline from Canadian re�ners are

captured by such �xed e¤ects.

7.5. Data for Land Prices

The land prices (hgt�s in Equation 3.14) were proxied by the Zillow Home Value Index (ZHVI)

at the zip-code level. These monthly data have been obtained from www.zillow.com for the

sample period of the gasoline price data. We believe that ZHVI is one of the best available

proxies for land prices because of its spatial coverage (e.g., Zillow appraises about 75% of

the houses in the U.S. several times a week and aggregates these house-level valuations into

indexes at the ZIP code level).16 To match the data with the model, we used the following

16It is important to notice that a house need not to be sold to be included in ZHVI.
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expression:

hgt2m = ZHV Im

where hgt2m is the land price faced by gas station g at day t that belongs to month m (e.g.,

September, 2010), and ZHV Im is the Zillow Home Value Index for monthm. In other words,

the time dimension of land prices are due to changes in monthly home prices.

7.6. Data for Taxes

Since we have the address of each and every gas station, it was trivial to identify the

state in which the gas station operates and to obtain gasoline taxes at the state level from

www.taxfoundation.org for both 2010 and 2011. The state-level taxes per gallon of gasoline,

which include taxes paid both to the state governments and other local governments, are

given in the right panel of Table 1 where they range between 8 and 46.6 cents for 2010 and

between 8 and 49.6 cents for 2011. The standard deviation of taxes across states is 8.5 for

2010 and 9.5 for 2011. The federal tax on gasoline (which is common across states) for both

2010 and 2011 was 18.4 cents per gallon.

However, the obtained gasoline taxes (at both state and federal levels) are in additive

(rather than multiplicative) terms. Hence, to connect the data to our model (where taxes

are in multiplicative terms), we have to use a transformation of taxes from additive to mul-

tiplicative form. Accordingly, for state-level taxes, we used the following transformation for

any gas station:

tstate;multiplicativet =
tstate;additivet

Rgt � tfederal;additivet � tstate;additivet

(7.5)
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and, for federal taxes, we used the following transformation:

tfederal;multiplicativet =
tfederal;additivet

Rgt � tfederal;additivet � tstate;additivet

(7.6)

where both tstate;multiplicativet and tfederal;multiplicativet may di¤er across gas stations (even within

any state), since they represent taxes as percentage of retail gasoline prices (that may be

di¤erent across gas stations) for a speci�c day. Finally, to connect the model to the multi-

plicative state-level and federal taxes, we used the following expression for gas station g:

�
1 + tgt2y

�
=
�
1 + tg;state;multiplicativet2y

��
1 + tg;federal;multiplicativet2y

�
where tg;state;multiplicativet2y and tg;federal;multiplicativet2y are the tax rates faced by gas station g at

time t that belongs to year y.

An alternative would be to subtract the summation of state-level and federal additive

taxes from the retail gasoline prices at the gas station level and conduct the empirical analy-

sis without taxes; however, in such a case, it would not be possible to have a variance

decomposition analysis to show the contribution of taxes to the gasoline price dispersion,

since such an analysis requires linearity (either in logs or levels) to be tractable.

7.7. Data for Crude Oil Prices

We use time �xed e¤ects to capture the e¤ects of daily crude oil prices in the regression

analysis. Although we have a rough justi�cation through our model that (1� Tt) captures

time-varying subsidies/transfers to re�ners, the empirical reason for using time �xed e¤ects

rather than using the actual crude oil prices is that crude oil prices may be re�ected by gas

stations after a certain period of time. For example, Borenstein et al. (1997) show that one

cent of an increase in crude oil prices leads to an increase of 0.55 cents in gasoline prices in
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the �rst two weeks and further 0.12 cent increase in the next two weeks, and for a 0.67 cents

increase after four weeks; moreover, the response of retail gasoline prices may be di¤erent

between an increase and a decrease in crude oil prices or the transmission of shocks from

crude oil prices to gasoline prices can be a¤ected di¤erently by supply and demand factors

as in Kilian (2010). Since the focus of this paper is the spatial analysis of gasoline prices, we

simply ignore the dynamic transmission mechanism of crude oil price changes into the retail-

level gasoline prices and use time �xed e¤ects to capture daily crude oil prices. Nevertheless,

for robustness, we alternatively replace time �xed e¤ects with daily crude oil prices (of West

Texas Intermediate obtained from www.eia.gov) to compare the estimated time �xed e¤ects

with daily crude oil prices.
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Table 1 - Descriptive Statistics 
 

Variable     Gasoline Prices   Maximum Gasoline Price Difference   State-Level Taxes 

Sample 
  

Pooled Sample 
 

Across Time (A Typical Day) 
 

Cents per Gallon 

STATE # of Stations   Min Max Median Mean Std. Dev. 
 

Min Max Median Mean Std. Dev. 
 

2010 2011 

Alabama 822  
 

2.27 2.95 2.63 2.67 0.15 
 

0.04 0.22 0.09 0.04 0.10 
 

20.9  30.9  
Alaska 155  

 

3.23 4.03 3.38 3.41 0.09 

 

0.00 0.64 0.25 0.13 0.31 

 

8.0  8.0  

Arizona 581  

 

2.29 2.89 2.61 2.62 0.12 

 

0.08 0.30 0.13 0.04 0.14 

 

19.0  19.0  

Arkansas 628  

 

2.00 2.95 2.64 2.67 0.15 

 

0.06 0.78 0.13 0.07 0.14 

 

21.8  21.8  

California 1,267  

 

2.00 3.19 2.97 2.98 0.14 

 

0.05 0.94 0.11 0.12 0.14 

 

46.6  49.1  

Colorado 767  

 

2.00 2.85 2.59 2.61 0.10 

 

0.07 0.58 0.14 0.05 0.15 

 

22.0  22.0  

Connecticut 651  

 

2.09 3.27 3.04 2.99 0.19 

 

0.08 0.84 0.14 0.09 0.15 

 

41.9  49.6  

Delaware 216  

 

2.00 3.39 2.89 2.87 0.19 

 

0.06 0.75 0.17 0.08 0.18 

 

23.0  23.5  

Washington DC 88  

 

2.57 4.26 3.08 3.09 0.25 

 

0.01 1.57 0.44 0.31 0.49 

 

23.5  23.0  

Florida 1,509  

 

2.09 3.04 2.72 2.76 0.16 

 

0.03 0.78 0.08 0.10 0.11 

 

34.5  34.5  

Georgia 950  

 

2.00 2.94 2.63 2.66 0.15 

 

0.06 0.51 0.11 0.06 0.13 

 

12.4  29.2  

Hawaii 245  

 

3.15 4.14 3.47 3.53 0.21 

 

0.14 0.76 0.60 0.06 0.60 

 

44.4  47.4  

Idaho 463  

 

2.42 3.29 2.87 2.86 0.10 

 

0.14 0.64 0.26 0.09 0.28 

 

25.0  25.0  

Illinois 1,275  

 

2.08 3.08 2.79 2.82 0.14 

 

0.06 0.71 0.11 0.07 0.13 

 

39.0  41.2  

Indiana 1,356  

 

2.16 3.09 2.75 2.76 0.16 

 

0.05 0.31 0.12 0.04 0.12 

 

34.1  39.7  

Iowa 855  

 

2.00 3.09 2.79 2.82 0.13 

 

0.12 0.99 0.23 0.11 0.26 

 

22.0  22.0  

Kansas 605  

 

2.43 3.05 2.69 2.73 0.14 

 

0.05 0.26 0.12 0.04 0.12 

 

25.0  25.0  

Kentucky 762  

 

2.42 3.04 2.73 2.75 0.14 

 

0.08 0.39 0.17 0.06 0.18 

 

22.5  27.8  

Louisiana 644  

 

2.10 2.91 2.63 2.66 0.14 

 

0.08 0.55 0.14 0.05 0.15 

 

20.0  20.0  

Maine 447  

 

2.51 3.17 2.96 2.92 0.17 

 

0.05 0.18 0.10 0.03 0.10 

 

31.0  31.5  

Maryland 662  

 

2.29 3.03 2.77 2.77 0.17 

 

0.06 0.37 0.13 0.04 0.13 

 

23.5  23.5  

Massachusetts 822  

 

2.25 3.05 2.84 2.79 0.18 

 

0.06 0.53 0.12 0.05 0.13 

 

23.5  23.5  

Michigan 1,560  

 

2.00 3.05 2.80 2.80 0.14 

 

0.04 0.91 0.10 0.12 0.13 

 

35.0  40.8  

Minnesota 1,168  

 

2.00 3.11 2.78 2.82 0.14 

 

0.04 0.89 0.08 0.07 0.09 

 

27.2  27.2  

Mississippi 810  

 

2.30 2.95 2.65 2.68 0.15 

 

0.08 0.39 0.16 0.05 0.17 

 

18.8  18.8  

Missouri 1,288  

 

2.00 2.89 2.58 2.61 0.14 

 

0.04 0.61 0.10 0.08 0.12 

 

17.3  17.3  

Montana 353  

 

2.70 3.29 2.89 2.90 0.08 

 

0.17 0.48 0.31 0.06 0.32 

 

27.8  27.8  

Nebraska 597  

 

2.51 3.32 2.89 2.91 0.13 

 

0.11 0.49 0.26 0.07 0.27 

 

27.7  27.2  

Nevada 527  

 

2.00 3.07 2.85 2.85 0.13 

 

0.10 0.86 0.16 0.08 0.18 

 

33.1  33.1  

New Hampshire 361  

 

2.31 3.05 2.85 2.81 0.17 

 

0.05 0.30 0.08 0.03 0.09 

 

19.6  19.6  

New Jersey 1,160  

 

2.15 2.95 2.73 2.68 0.19 

 

0.04 0.34 0.08 0.05 0.10 

 

14.5  14.5  

New Mexico 540  

 

2.14 2.97 2.69 2.71 0.10 

 

0.13 0.75 0.24 0.09 0.26 

 

18.8  18.9  

New York 1,109  

 

2.00 3.26 2.99 2.96 0.19 

 

0.05 0.92 0.14 0.12 0.17 

 

44.6  49.5  

North Carolina 1,110  

 

2.00 2.99 2.69 2.73 0.15 

 

0.04 0.69 0.10 0.08 0.13 

 

30.2  35.3  

North Dakota 312  

 

2.08 3.39 2.94 2.94 0.16 

 

0.15 0.98 0.41 0.09 0.42 

 

23.0  23.0  

Ohio 1,609  

 

2.37 3.02 2.72 2.74 0.14 

 

0.05 0.34 0.12 0.05 0.13 

 

28.0  28.0  

Oklahoma 665  

 

2.37 2.88 2.59 2.62 0.13 

 

0.04 0.24 0.11 0.04 0.11 

 

17.0  17.0  

Oregon 501  

 

2.59 3.15 2.89 2.90 0.11 

 

0.12 0.26 0.18 0.03 0.18 

 

25.0  31.0  

Pennsylvania 951  

 

2.17 3.09 2.85 2.83 0.19 

 

0.04 0.60 0.10 0.08 0.12 

 

32.3  32.5  

Rhode Island 277  

 

2.44 3.55 3.00 2.97 0.19 

 

0.11 0.53 0.22 0.08 0.23 

 

33.0  33.0  

South Carolina 819  

 

2.27 2.87 2.57 2.61 0.15 

 

0.05 0.44 0.10 0.05 0.11 

 

16.8  16.8  

South Dakota 289  

 

2.49 3.29 2.89 2.92 0.14 

 

0.14 0.54 0.32 0.08 0.34 

 

24.0  24.0  

Tennessee 991  

 

2.00 2.89 2.59 2.65 0.15 

 

0.05 0.78 0.10 0.08 0.12 

 

21.4  21.4  

Texas 1,594  

 

2.00 2.85 2.55 2.59 0.15 

 

0.04 0.56 0.11 0.09 0.14 

 

20.0  20.0  

Utah 622  

 

2.30 2.87 2.71 2.72 0.05 

 

0.07 0.47 0.11 0.05 0.12 

 

24.5  24.5  

Vermont 295  

 

2.54 3.34 3.04 2.99 0.19 

 

0.06 0.30 0.17 0.04 0.17 

 

24.5  26.6  

Virginia 731  

 

2.06 2.93 2.61 2.64 0.16 

 

0.07 0.73 0.16 0.07 0.16 

 

19.5  20.0  

Washington 532  

 

2.07 3.13 2.95 2.94 0.10 

 

0.06 0.87 0.13 0.09 0.15 

 

37.5  37.5  

West Virginia 402  

 

2.54 3.19 2.89 2.92 0.14 

 

0.06 0.35 0.15 0.05 0.16 

 

32.2  32.2  

Wisconsin 1,048  

 

2.55 3.05 2.79 2.83 0.13 

 

0.04 0.49 0.08 0.05 0.09 

 

32.9  32.9  

Wyoming 254  

 

2.42 3.09 2.69 2.73 0.13 

 

0.26 0.58 0.41 0.05 0.41 

 

14.0  14.0  

                 Min 88  

 

2.00 2.85 2.55 2.59 0.05 

 

0.00 0.18 0.08 0.03 0.09 

 

8.0 8.0 

Max 1,609  

 

3.23 4.26 3.47 3.53 0.25 

 

0.26 1.57 0.60 0.31 0.60 

 

46.6 49.6 

Median 662  

 

2.25 3.05 2.79 2.80 0.14 

 

0.06 0.56 0.13 0.07 0.14 

 

24.0 25.0 

Mean 750  

 

2.27 3.14 2.81 2.82 0.15 

 

0.07 0.59 0.17 0.07 0.18 

 

26.0 27.5 

Std. Dev. 403    0.28 0.30 0.19 0.18 0.03   0.05 0.27 0.11 0.04 0.11   8.5 9.5 

 
Notes: Min stands for minimum, Max for maximum, Std. Dev. for standard deviation. Pooled sample includes all gas stations from all 144 days 
in the sample period. Maximum price difference has been calculated for each state/district for each day; the numbers in the table show the 
summary statistics of the maximum price difference across time.  



Table 2 - Estimation Results 

Independent Variable 
 

Spatial Measure #1  Spatial Measure #2 Spatial Measure #3 Spatial Measure #4 Spatial Measure #5 

S.D. of Nighttime Lights 
 -0.12 

[-0.13,-0.11] 
-0.23 

[-0.24,-0.21] 
-0.82 

[-0. 85,-0. 78] 
-1.64 

[-1.73,-1.55] 
-1.92 

[-2.06,- 1.78] 

# of Nearby Stations 
 

-0.05 
[-0.08 ,-0.04] 

-0. 12 
[-0.13 ,-0. 09] 

-0.14 
[-0.15,-0.12] 

-0.02 
[-0.06,0.03] 

-0.19 
[-0.24,-0.13] 

Distribution Costs 
 

0. 41 
[0.39,0.43] 

0. 41 
[0.39,0.43] 

0. 36 
[0. 34,0.38] 

0. 25 
[0.23,0.27] 

0.17 
[0.16,0.19] 

Land Prices 
 

0.70 
[0.66,0.74] 

0.65 
[0.61,0.69] 

0.66 
[0.62,0.70] 

0.76 
[0.72,0.80] 

0.79 
[0.75,0.83] 

Brand Fixed Effects 
 

YES YES YES YES YES 

Refinery Fixed Effects 
 

YES YES YES YES YES 

Time Fixed Effects 
 

YES YES YES YES YES 

R-Squared 
 

0.9016 0.9006 0.9008 0.9006 0.9004 

Notes: Dependent variable is log gasoline prices. The 5% confidence intervals are in brackets. The estimates and the corresponding intervals 

have been multiplied by 100 for presentational purposes. State and federal taxes have restricted coefficients of one that are not shown.  

 

 



Table 3 - Variance Decomposition of Log Gasoline Prices 

% Explained by 
 

Spatial Measure #1  Spatial Measure #2 Spatial Measure #3 Spatial Measure #4 Spatial Measure #5 

S.D. of Nighttime Lights 
 

-0.35 -0.30 0.42 1.70 2.30 

# of Nearby Stations 
 

0.04 0.15 0.23 0.05 0.25 

Distribution Costs 
 

0.14 0.14 0.11 0.08 0.05 

Land Prices 
 

1.27 1.17 1.19 1.37 1.42 

Brand Fixed Effects  
 

-0.45 -0.33 -0.30 -0.16 -0.05 

State Taxes 
 

11.77 12.19 12.28 12.28 12.28 

Federal Taxes 
 

-6.87 -6.85 -6.84 -6.84 -6.84 

Refinery Fixed Effects 
 

33.44 33.10 32.25 30.86 29.91 

Time Fixed Effects 
 

51.17 50.78 50.73 50.73 50.72 

Residuals 
 

9.84 9.94 9.92 9.94 9.96 

 

 



Figure 1 - Location of Gas Stations and Refiners 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Gas stations are represented by blue small dots, and refiners are represented by red large squares. There are four Canadian refiners in 

the northeast of the map; these are the closest refiners to some gas stations (in our sample) in Northeastern United States. 



Figure 2 - Maximum Price Difference on a Typical Day 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Notes: For each day, the maximum price difference is calculated across gas stations within each state for each day. This map represents the 

median value (of the maximum price difference) in U.S dollars across all days in the sample. 



Figure 3 - An Approximate Typical Example of One 30-Arc-Second Grid in Chicago, IL 

 

Notes: The source is Google Maps. The transparent area in red represents one 30-arc-second grid.  

 


